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Abstract

Nominal systems are an alternative approach for the treatment of variables in computational systems.
In the nominal approach variable bindings are represented using techniques that are close to first-order
logical techniques, instead of using a higher-order metalanguage. Functional nominal computation can be
modelled through nominal rewriting, in which α-equivalence, nominal matching and nominal unification
play an important role. Nominal unification was initially studied by Urban, Pitts and Gabbay and then
formalised by Urban in the proof assistant Isabelle/HOL and by Kumar and Norrish in HOL4. In this
work, we present a new specification of nominal unification in the language of PVS and a formalisation
of its completeness. This formalisation is based on a natural notion of nominal α-equivalence, avoiding
in this way the use of the intermediate auxiliary weak α-relation considered in previous formalisations.
Also, in our specification, instead of applying simplification rules to unification and freshness constraints,
we recursively build solutions for the original problem through a straightforward functional specification,
obtaining a formalisation that is closer to algorithmic implementations. This is possible by the independence
of freshness contexts guaranteed by a series of technical lemmas.
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1 Introduction

When one introduces variable binders in a language, one thing to be considered

immediately is α-equivalence. For instance, it must be possible to derive the equiv-

alence between the formulas ∃x : x > 1 and ∃y : y > 1, despite the syntactical

differences. Nominal theories treat binders in a way that is closer to informal prac-

tice, using variable names and freshness constraints instead of using indices as in

explicit substitutions à la de Bruijn. In nominal syntax, there are two kinds of

variables: atoms, representing object-level variables, and meta-variables, or simply
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variables. Atoms can be abstracted but not substituted, whereas variables cannot

be abstracted but can be substituted. The notion of substitution is first-order in

the sense that it allows capture, but freshness constraints are taken into account.

Notions such as rewriting (cf. [FG07]) and unification (cf. [UPG04]) can be directly

defined, without having to rely on involved notions such as β-reduction, as in the

higher-order and explicit substitutions approaches (cf. [Hue75,DHK00,ARK01]).

Nominal unification problems can be solved (modulo α-equivalence) with first-

order substitutions that act over meta-variables, i.e., simply filling the holes

marked with meta-variables (X,Y, Z, . . . ) and allowing capture of variable names

(a, b, c, i, k, . . . ). This can be illustrated by the expressions

7∑
k=0

5∑
i=0

(i−X)i and

7∑
i=0

5∑
k=0

(X − Y )k,

which admit a most general unifier according to the algorithm in [UPG04], with

solution [X 7→ k][Y 7→ i]. Note that i and k are captured, because these names are

bound or abstracted by the sum operator. In a higher-order unification approach,

this solution would not be accepted because bound variable capture is forbidden.

On the other hand, the unification problem with the expressions

5∑
i=0

(i−X)i and

5∑
k=0

(X − Y )k

has no solution in the nominal setting. One could argue that a solution could be

obtained instantiating [X 7→ i][Y 7→ i] and renaming k as i. But this is not possible

since i should be a “fresh” name in the scope of the second sum in order to proceed

with this renaming, and the chosen substitution contradicts this condition. In other

words, the meta-variable X should be instantiated uniformly among the problem.

Translations between nominal unification problems and higher-order pattern uni-

fication problems are given in [Che05,LV12].

1.1 Contribution

In this paper, we present a functional specification of a new nominal unification

algorithm and formalise its correctness and completeness in the language of the

higher-order proof assistant Prototype Verification System (PVS) [SORSC01]. PVS

was chosen because it has a large library about term rewriting systems ([GAR10])

and our nominal unification theory extends this background about rewriting.

The style of our specification is close to the functional presentations of Robin-

son’s first-order unification algorithm, and the formalisation avoids the use of in-

termediate equivalence relations, obtaining in a straightforward manner transitivity

and symmetry of the nominal α-equivalence relation. Indeed, in [Urb10b], a “weak

equivalence” is used in order to simplify the proof of transitivity for the standard

nominal α-equivalence. However, in this paper, we present an even simpler proof,

avoiding formalisations of properties of this weak intermediate relation. This is

obtained following the analytic scheme of proof shown in [FG07].
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The nominal unification algorithm given in Isabelle/HOL in [Urb10a] is essen-

tially specified as the transformation rule system presented in [UPG04]. These rules

transform unification problems with their associated freshness contexts into simpler

ones. This approach is very elegant and allows a higher level of abstraction that

simplifies the analysis of computational properties such as termination and unique-

ness of solutions, but it is not so useful in implementations due to its inherent

non-determinism (regarding the application of the transformation rules).

Here we present a new nominal unification algorithm that has only two nominal

terms (but no freshness context) as parameters, as done in [CF10,LV10]. However,

the algorithms presented in [CF10,LV10] focus on efficiency, whereas our goal is to

formalise the proof of correctness by specifying the algorithm in PVS as a recursive

function “unify” working directly on terms and formalising separately properties

of contexts. Although the function “unify” does not carry freshness contexts, it

builds them at the end of the execution together with the substitution solution.

The freshness problems generated during the recursive computation are solved sep-

arately due to the independence of solutions for freshness and without involving

extra fresh variables as usual in a nominal setting. This differs from the treatment

given in [LV10] where freshness constraints, as well as suspensions, are encoded as

equations, that was proved equivalent to the treatment in [CF10] in [Cal13].

1.2 Related work

There are formalisations of nominal theories in other proof assistants. The most

relevant formalisation has been implemented in Isabelle/HOL [Urb08], where α-

equivalence between terms is effectively obtained by representing terms as “ab-

straction functions”. Thus, Urban [Urb08] presents some basic conditions that are

sufficient to guarantee the equivalence between two representations of terms, then,

an induction principle is presented, to obtain proofs by induction over abstracted

terms in a more natural way. For instance, the Substitution Lemma (well-known in

the context of λ-calculus) was formalised using these techniques.

A similar work was done in Coq [ABW07], but bound variables were encoded

by using de Bruijn indices and the terms were defined as having the type of lo-

cally nameless terms. An induction principle was implemented in order to prove

properties about well-formed terms without mentioning indices.

Another formalisation in Isabelle/HOL is available in [Urb10a], to deal with

nominal unification following [UPG04]. This formalisation is closer to ours in the

sense that α-equivalence is defined under some side-conditions (namely, freshness

conditions). The properties formalised in this system include the fact that the

specified α-equivalence is indeed an equivalence relation, termination and soundness

of the unification algorithm and characterisation of the normal forms generated by

the algorithm.

In [Urb10b], Urban compares the proof of transitivity of the α-equivalence rela-

tion presented in [Urb10a,FG07] and [KN10]. The proof shown in the last citation

was then considered the best because it avoids a more complex inductive scheme on

the size of terms. However, it requires the implementation of a “weak-equivalence”

relation as a workaround. Here, we follow auxiliary lemmas developed in [FG07], but
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with a simpler proof of transitivity by induction on the structure of terms obtaining

directly the necessary result that the specified α-equivalence relation is indeed an

equivalence relation.

The specification of our algorithm, passing as parameters only pairs of terms to

be unified, is closer to functional presentations in the style of Robinson’s first-order

unification that have been repeatedly formalised in a variety of proof assistants (e.g.,

[Pau85,AGdMA14]).

1.3 Organisation

Section 2 presents the basic concepts and grammars used in the nominal context.

Section 3 defines freshness and α-equivalence and makes explicit (subsection 3.1) the

details about the proof of transitivity of α-equivalence used in previous formalisa-

tions in comparison with the ones strictly necessary in the current approach. Also,

this section (subsection 3.2) presents a function that computes the minimal fresh-

ness context needed to derive a freshness constraint. This is crucial for obtaining a

unification algorithm that does not need to carry freshness contexts continuously.

Section 4 presents the main contributions of this paper: the specification of a func-

tional algorithm to solve nominal unification problems and the formalisation of its

soundness and completeness.

This paper is accompanied with the whole PVS development for nominal unifi-

cation, which includes specifications of all notions and definitions as well as formal-

isations of the proofs of all lemmas and theorems given in this paper, available for

download in the PVS theory for term rewriting systems trs.cic.unb.br.

2 Preliminaries

This section presents some basic definitions: permutations, terms and substitutions,

which are needed to reason about a nominal unification algorithm.

Definition 2.1 Atoms or names are basic structures in the context of nominal

theories. They represent object-level variables; the set A of all atoms is countably

infinite. A swapping (a b) is a bijection from A into A that exchanges a and

b and that fixes any other atom. Permutations are also bijections of the form

π : A → A, which change a finite number of atoms and that are represented as lists

of swappings. Then, the action of a permutation over atoms is recursively defined

as:

id(c) = c , where id is the null list;

((a b) ◦ π)(c) =
{
a , if π(c) = b; b , if π(c) = a; π(c) , otherwise.

The inverse of π is the reverse list of swappings and it is denoted by π−1.

Definition 2.2 Let Σ and V be a signature with function symbols and a countably

infinite set of variables, respectively. Then, the set T (Σ,A,V) of nominal terms

is generated by the following grammar:

t ::= ā | π ·X | () | (t1, t2) | [a]t | f t ,
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where ā is an atom, π · X is a suspension (a permutation π suspended in the

variable X ∈ V), () is the unit or empty tuple, (t1, t2) is a pair of terms, [a]t is

an abstraction (a term with the atom a abstracted) and f t is an application (a

symbol f ∈ Σ applied to a term).

Notice that to encode terms in PVS, we distinguish between the atom a and

the term ā that consists of the atom a (compare with the constructor at in the

following code of the data structure of terms). Also, the function application works

for symbols with arity one. To represent a greater arity, one can use pairs to encode

tuples with any number of arguments. For instance, if the symbol f has arity

3, then we can describe the term f(t1, (t2, t3)) using the present grammar. The

next specification of terms in PVS allows us to have induction schemes generated

automatically.

term[atom:TYPE+, perm:TYPE+, variable:TYPE+, symbol:TYPE+ ]:DATATYPE
BEGIN

at (a: atom): atom?
* (p: perm, V: variable): susp?
unit: unit?
pair (term1: term, term2: term): pair?
abs (abstr: atom, body: term): abs?
app (sym: symbol, arg: term): app?

END term

Definition 2.3 The depth of a term is computed by the following function:

depth(ā) = depth(π ·X) = depth( () ) = 0 depth([a]t) = 1 + depth(t)

depth((t1, t2)) = 1 +max(depth(t1), depth(t2)) depth(f t) = 1 + depth(t)

The function depth is used as part of the measure provided to ensure termination

of the nominal unification algorithm.

Actions of permutations can be homomorphically extended over terms. This

means that permutations only change atoms and are accumulated into suspensions.

A precise definition is given below.

Definition 2.4 The action of a permutation π over terms is defined as:

π • ā = π(a) π • (π′ ·X) = (π ◦ π′) ·X π • () = ()

π • (t1, t2) = (π • t1, π • t2) π • [a]t = [π(a)]π • t π • f t = f π • t

One important observation is that the variables in suspensions work as meta-

variables, where a substitution that replaces variables by terms is a primitive notion.

With this in mind, it is reasonable that nominal variables are not abstractable. The

denomination ‘suspension’ for π · X has to do with the fact that the permutation

π cannot indeed apply to X until the instance of this variable is known; so it is

suspended.

In PVS, permutations are specified as lists of pairs of atoms. The function

act applies a permutation to an atom by the recursive action of the swappings

that represent the permutation. On the other hand, the function ext extends the

action of permutations to terms homomorphically, i.e., it applies act to atoms and

accumulates permutations in suspensions.

5



Ayala-Rincón and Fernández and Rocha-Oliveira

- perm: TYPE = list[[atom,atom]]
- act(pi:perm)(c): RECURSIVE atom =

CASES pi OF
null: c,
cons((a,b),rest): LET d = act(rest)(c) IN

IF d = a THEN b
ELSIF d = b THEN a
ELSE d
ENDIF

ENDCASES
MEASURE pi BY <<

- ext(pi:perm)(t:term): RECURSIVE term =
CASES t OF

at(a): at(act(pi)(a)),
*(pm, v): *(append(pi, pm), v),
unit: unit,
pair(t1,t2): pair(ext(pi)(t1),ext(pi)(t2)),
abs(ab, bd): abs(act(pi)(ab), ext(pi)(bd)),
app(sl, ag): app(sl, ext(pi)(ag))

ENDCASES
MEASURE t BY <<

Remark 2.5 The necessity and use of ‘measure’ functions in PVS recursive func-

tions is for proving termination according to the operational semantics of termina-

tion of PVS. This measure on the parameters should decrease after each recursive

call. In the previous functions the measure ‘<<’ represents the standard measure on

the data structures of permutations and terms; respectively, length of lists and the

subterm relation. In some cases, as for these functions, the system can automatically

verify the decrement of the measure provided.

Definition 2.6 A nuclear substitution is a pair of the form [X 7→ s], where X

is a variable and s is a term, and its action over terms is defined as:

ā[X 7→s] = ā [a]t[X 7→s] = [a](t[X 7→s]) (π · Y )[X 7→s] =

 π · Y , if X 6= Y

π • s , otherwise

()[X 7→s] = () (f t)[X 7→s] = f (t[X 7→s]) (t1, t2)[X 7→s] = (t1[X 7→s], t2[X 7→s])

A substitution σ is a list of nuclear substitutions, which are applied one-by-one

over terms, i.e:

t Id = t , where Id is the empty list; t (σ ◦ [X 7→ s]) = (t σ)[X 7→ s].

Notation: If σ and γ are two substitutions, then σγ represents the composition of

such substitutions, i.e., σ ◦ γ.

Remark 2.7 This notion of substitution is different from the simultaneous appli-

cation of nuclear substitutions. This approach is closer to triangular substitutions

as explored in [KN10], with the view to be more space efficient.

Definition 2.8 The set of variables of a term is recursively computed by the

function V ars, as follows.

Vars(ā) = ∅ Vars(π ·X) = {X} Vars( () ) = ∅

Vars((t1, t2)) = Vars(t1) ∪Vars(t2) Vars([a]t) = Vars(t) Vars(f t) = Vars(t)
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The next lemma states the invariance of alternating the application of a permu-

tation and a substitution on a term.

Lemma 2.9 For any term t, π • (tσ) = (π • t)σ.

Proof. By induction on the structure of t. 2

3 Freshness and α-equivalence

As mentioned earlier, [UPG04] presented an algorithm to decide α-equivalence of

nominal terms, based on a notion of freshness of names in terms, without the

necessity of generating new names.

Definition 3.1 (Freshness) A freshness context ∇ is a finite set of pairs of the

form (a,X). We say that an atom a is fresh in t under ∇ (denoted by ∇ ` a#t) if

it is possible to build a proof of this judgement using the rules:

∇ ` a#b̄
(#ab)

∇ ` a#( )
(#unit)

(π−1(a), X) ∈ ∇
∇ ` a#π ·X

(#X)

∇ ` a#s1 ∇ ` a#s2

∇ ` a#(s1, s2)
(#pair)

∇ ` a#[a]s
(#absa)

∇ ` a#s

∇ ` a#[b]s
(#absb)

∇ ` a#s

∇ ` a#f s
(#f)

Notation: If ∇ and ∆ are freshness contexts, then ∇ ` ∆ means that ∆ ⊆ ∇ and

∇∆ denotes ∇∪∆.

The following two auxiliary lemmas express invariance of derivability in the pre-

vious calculus under the action of permutations and weakening of freshness contexts.

Lemma 3.2 ∇ ` a#t⇔ ∇ ` π · a#π • t.

Lemma 3.3 If ∇ ` ∆ and ∆ ` a#t, then ∇ ` a#t.

The proofs are by induction on the derivation of ∆ ` a#t.

Now, with the notions of permutation and freshness, α-equivalence can be de-

fined in a formal way.

Definition 3.4 (α-equivalence) The terms t and s are α-equivalent in the con-

text ∇, denoted by ∇ ` t ≈α s, if there is a proof of this judgement using the

rules:

∇ ` ā ≈α ā
(≈αa)

ds(π, π′)#X ⊆ ∇
∇ ` π ·X ≈α π′ ·X

(≈αX) ∇ ` () ≈α ()
(≈α())

∇ ` s1 ≈α t1 ∇ ` s2 ≈α t2
∇ ` (s1, s2) ≈α (t1, t2)

(≈αpair)
∇ ` s ≈α t

∇ ` [a]s ≈α [a]t
(≈αabsa)

∇ ` s ≈α (a b) · t ∇ ` a#t

∇ ` [a]s ≈α [b]t
(≈αabsb)

∇ ` s ≈α t
∇ ` f s ≈α f t

(≈αf)
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where ds(π, π′) = {b ∈ A | π(b) 6= π′(b)} (namely, the difference set between two

permutations) and ds(π, π′)#X is the context formed by the pairs (b,X), for each

b ∈ ds(π, π′).

3.1 A direct formalisation of transitivity of α-equivalence

The next four auxiliary lemmas relate α-equivalence, freshness and the action of

permutations. The first one expresses preservation of freshness by α-equivalent

terms; the second one, alternation of the action of a permutation and its inverse on

α-equivalent terms; the third one, invariance of α-equivalence under the action of

a permutation; and, the fourth one, preservation of α-equivalence of a term under

the action of permutations whose difference set is fresh in the term.

Lemma 3.5 ∇ ` a#s and ∇ ` s ≈α t implies ∇ ` a#t.

Lemma 3.6 ∇ ` s ≈α π • t⇒ ∇ ` π−1 • s ≈α t.

Lemma 3.7 ∇ ` s ≈α t⇔ ∇ ` π • s ≈α π • t.

Lemma 3.8 ∇ ` ds(π1, π2)#t implies ∇ ` π1 • t ≈α π2 • t.

Lemmas 3.5-3.8 are proved by induction on s, applying Lemma 3.2. For Lemma

3.6, Lemma 3.5 is applied. The treatment is the same as in previous papers

([UPG04,FG07,Urb10b]) and their complete formalisations are available in the ac-

companying PVS development.

The proof of the next lemma is shown in detail because, at this point, the

formalisation differs from the one given in [Urb10a] and reported in [Urb10b].

Lemma 3.9 (Transitivity of α-equivalence) The relation ≈α is transitive un-

der a given context ∇, i.e., ∇ ` t1 ≈α t2 and ∇ ` t2 ≈α t3 implies ∇ ` t1 ≈α t3.

Proof. The proof is by induction on the structure of t1.

• t1 = ā: then by definition of ≈α, t2 = t3 = ā.

• t1 = π1 ·X: so t2 = π2 ·X and t3 = π3 ·X. We need to prove that ds(π1, π3)#X ⊆
∇. So, take c such that π1 · c 6= π3 · c. There are two cases: if π1 · c = π2 · c,
then π2 · c 6= π3 · c and (c,X) ∈ ∇ for ds(π2, π3)#X ⊆ ∇; if π1 · c 6= π2 · c, then

(c,X) ∈ ∇ because ds(π1, π2)#X ⊆ ∇.

• t1 = () implies t2 = () and t3 = ().

• t1 = (s1, s2): then t2 = (u1, u2) and t3 = (w1, w2). By induction hypothesis,

∇ ` s1 ≈α w1 and ∇ ` s2 ≈α w2.

• t1 = f s: then t2 = f u and t3 = f w. By induction hypothesis, ∇ ` s ≈α w.

• t1 = [a]s: then t2 = [b]u and t3 = [c]w. It is necessary to compare the abstractors:

· a = b = c: thus the result follows by induction hypothesis trivially.

· a = b 6= c: by definition, ∇ ` s ≈α u and ∇ ` u ≈α (b c) • w and ∇ ` b#w. By

IH, ∇ ` s ≈α (b c) • w. As a = b, then freshness condition is satisfied to a as

well.

· a 6= b = c: we have ∇ ` a#u, ∇ ` s ≈α (a c) • u and ∇ ` u ≈α w. By

Lemma 3.7, ∇ ` (a c) • u ≈α (a c) • w and, by IH, ∇ ` s ≈α (a c) • w. By
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Lemma 3.2, ∇ ` c#(a c) • u and ∇ ` c#(a c) •w by Lemma 3.5. Finally, again

by Lemma 3.2, ∇ ` a#w.

· b 6= a = c: it is known that ∇ ` s ≈α (b c) • u and ∇ ` u ≈α (b c) • w. Then,

∇ ` (b c) • u ≈α w by Lemma 3.6. By IH, ∇ ` s ≈α w.

· a 6= b 6= c 6= a: it is necessary to prove that∇ ` s ≈α (a c)•w and∇ ` a#w. Let

us prove first freshness: by definition of ≈α, ∇ ` a#u and ∇ ` u ≈α (b c) • w.

By Lemma 3.5, ∇ ` a#(b c) • w and, by Lemma 3.2(⇐), ∇ ` a#w. Now

let us prove α-equivalence: by hypothesis, ∇ ` s ≈α (a b) • u, ∇ ` u ≈α
(b c) • w and ∇ ` b#w. By Lemma 3.7, ∇ ` (a b) • u ≈α (a b)(b c) • w.

As ds((a b)(b c), (a c)) = {a, b} and both atoms are fresh in w, then ∇ `
(a b)(b c) • w ≈α (a c) • w by Lemma 3.8. Now, applying IH twice, one obtains

∇ ` s ≈α (a c) • w. 2

Note that the critical point in this proof is the abstraction, particularly when

all the abstractors differ. This is due to the asymmetry of rule (≈αabsb) in Defini-

tion 3.4. The previous lemma was also presented in [UPG04,FG07], but in [Urb10b],

a weak equivalence notion (Definition 3.10) is used as an intermediate relation to

contour the problem with the abstraction case. However, auxiliary lemmas similar

to the ones presented here were necessary in [Urb10b], beyond of other technical

results to deal specifically with this weak equivalence (some of those additional lem-

mas in [Urb10b] are particular cases of transitivity). In the current formalisation,

weak equivalence was not needed and the abstractions were treated as given in the

five cases in the proof of Lemma 3.9.

Definition 3.10 (Weak-equivalence) Given two terms s, t, they are said to be

weak equivalent (notation: s ∼ t) whenever there exists a derivation of it from

the following rules:

ā ∼ ā
(∼a)

ds(π, π′) = ∅
π ·X ∼ π′ ·X

(∼X)
() ∼ ()

(∼())

s1 ∼ t1 s2 ∼ t2
(s1, s2) ∼ (t1, t2)

(∼pair)
s ∼ t

[a]s ∼ [a]t
(∼absa)

s ∼ t
f s ∼ f t

(∼f)

In the previous definition, observe that when s ∼ t, then s and t differ only

in possible representations of permutations π and π′ in suspended variables. Even

so, the action of those permutations must be equal. Thus, the relation ∼ actually

is closer to syntactic equality than to α-equivalence. To obtain transitivity of ≈α
using this definition, several auxiliary steps are necessary, among others, proving

that ∼ is invariant under the action of permutations, preservation of freshness by

weak-equivalent terms, etc. These lemmas are similar to the previously mentioned

for ≈α. In addition, it is necessary to prove that, under a freshness context ∆,

(≈α ◦ ∼) ⊆≈α, which is the key property for concluding transitivity of ≈α. All

this work is unnecessary in our approach.

Lemma 3.11 (Equivalence) ≈α is an equivalence relation under any context ∇.

Proof. Transitivity is guaranteed by Lemma 3.9. Reflexivity (∇ ` t ≈α t) and
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symmetry (∇ ` t ≈α s implies ∇ ` s ≈α t) are easy to verify through an inductive

proof on the structure of t. The interesting case is the proof of symmetry for

abstractions with different abstractors. In this case, ∇ ` [a]t′ ≈α [b]s′ means

∇ ` t′ ≈α (a b) • s′ and ∇ ` a#s′. Applying (a b) to the freshness, we obtain

∇ ` b#(a b) • s′ and, by Lemma 3.5, ∇ ` b#t′. Now, by induction hypothesis,

∇ ` (a b)•s′ ≈α t′ and, by Lemma 3.6, ∇ ` s′ ≈α (a b)• t′. This proves ∇ ` [b]s′ ≈α
[a]t′. 2

Notice that, unlike the proofs given in [UPG04,Urb10b], this formalised proof

of symmetry does not use transitivity. Thus, these two properties are somehow

independent from each other.

3.2 Minimal Freshness Contexts

As it will be shown in Section 4, a solution for a unification problem is a pair

(∇, σ) of a freshness context and a substitution. What is expected from a nominal

unification algorithm is that it generates “most general solutions” with respect to

an ordering “≤” as in the first-order case (see Definition 4.11). In this way, in the

current formalisation, a function was specified that can compute a minimal freshness

context ∇ which derives a freshness problem a#t when possible, i.e., ∇ ` a#t and

∇ is a subset of any other context ∆ such that ∆ ` a#t.

In the next function, the measure “<<” denotes the proper subterm relation

that is generated by PVS when the abstract data structure specified for terms is

type-checked. As for the example in Remark 2.5, termination with respect to this

measure can be automatically verified.

Definition 3.12 Let a be an atom and t be a term. Define the function 〈 # 〉sol
that takes as input a pair (a, t) and outputs a freshness context and a Boolean, as
follows:

〈a#t〉sol := CASES OF t :

b̄ : (∅, a 6= b),

π ·X : ({(π−1 • a,X)}, T rue),
() : (∅, T rue),

(t1, t2) : LET (∆1, b1) = 〈a#t1〉sol, (∆2, b2) = 〈a#t2〉sol
IN IF b1 = b2 = True THEN (∆1∆2, T rue)

ELSE (∅, False),
[b]t̂ : IF a = b THEN (∅, T rue) ELSE 〈a#t̂〉sol,
f t̂ : 〈a#t̂〉sol

MEASURE <<

The function above was taken from the transformation rules related to the uni-

fication algorithm in [UPG04]. The difference is that here the freshness solutions

are obtained separately from the substitutions which solve the equational problems

in the unification algorithm. in this way, it is clear that the freshness constraints

can restrict the validity of a unification problem, but they cannot modify the sub-

stitution that solves the problem.

The following lemma formalises the correctness of the previous definition.

Lemma 3.13 (Correctness of 〈 # 〉sol) Take (∆, b) = 〈a#t〉sol. Then,

(b = True⇒ ∆ ` a#t) and (for any ∇, ∇ ` a#t⇒ b = True and ∇ ` ∆).

10
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Proof. The proof is by induction on the structure of t. The interesting case is

when t = (t1, t2), because to use rule (#pair), we need to have the same context

in the derivations ∇ ` a#t1 and ∇ ` a#t2. However, the function 〈 # 〉sol returns

minimal contexts ∆1 and ∆2 to t1 and t2, respectively. For this reason, ∆1 and ∆2

have to be joined when computing 〈 # 〉sol. Then, using Lemma 3.3, it is possible

to enlarge the contexts into the derivations ∆1∆2 ` a#t1 and ∆1∆2 ` a#t2 in order

to be able to use the mentioned rule. 2

This function is crucial to build independently a freshness context for a whole

nominal unification problem from its partial solutions, and it is used in the recursive

treatment for the case of abstractions and pairs as will be explained in the next

section.

Notation: 〈∇σ〉sol represents the union of solutions of 〈a#(id · X)σ〉sol, for all

(a,X) ∈ ∇, with ∇σ denoting the resulting context if every subproblem is consis-

tent, or (∅, False) if there is some inconsistency. The notation ∆ ` ∇σ states that

∆ ` a#(id ·X)σ is derivable for all (a,X) ∈ ∇.

4 Nominal unification algorithm

In order to construct a nominal unification algorithm as a recursive function in

the specification language of PVS, it is necessary to provide a recognisable answer

in cases of failure, because PVS does not allow partial functions. To deal with

failure, our algorithm will return triplets of the form (∇, σ, b), which are a context,

a substitution and a Boolean, respectively, instead of pairs of the form (∇, σ). The

triplet of the form (∅, Id, False) identifies failure cases and triplets of the form

(∇, σ, T rue) successful cases with solutions of the form (∇, σ).

Definition 4.1 (Unifiable terms and unifiers) Two terms t, s are said to be

unifiable if there exists a context ∇ and a substitution σ such that ∇ ` tσ ≈α sσ.

Under these conditions, the pair (∇, σ) is called a unifier of t and s.

Definition 4.2 (Nominal Unification Function) Let t, s be two nominal terms.
Then, we define the function

unify(t, s) := IF s = πs ·Xs AND Xs /∈ Vars(t) THEN (∅, [Xs 7→ π−1
s • t], T rue)

ELSE

CASES OF (t, s) :

(πt ·X, πs ·X) : (ds(πt, πs)#X, Id, True),

(πt ·Xt, s) : IF Xt /∈ Vars(s) THEN (∅, [Xt 7→ π−1
t • s], T rue),

(ā, ā) : (∅, Id, T rue),
((), ()) : (∅, Id, T rue),

((t1, t2), (s1, s2)) : LET (∇1, σ1, b1) = unify(t1, s1),

(∇2, σ2, b2) = unify(t2σ1, s2σ1),

(∇3, b3) = 〈∇1σ2〉sol
IN (∇2∇3, σ1σ2, b1 ∧ b2 ∧ b3),

([a]t̂, [b]ŝ) : IF a = b THEN unify(t̂, ŝ)

ELSE LET (∇1, σ, b1) = unify(t̂, (a b) • ŝ),
(∇2, b2) = 〈a#ŝσ〉sol

IN (∇1∇2, σ, b1 ∧ b2),

(f t̂, f ŝ) : unify(t̂, ŝ),

ELSE : (∅, Id, False)
MEASURE lex(|Vars(t, s)|, depth(t))

11
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The measure function provided (see Remark 2.5) is lexicographic, with first com-

ponent the number of variables in the unification problem and second component

the depth of the first term of the unification problem.

The next remarks explain how the function 〈 # 〉sol correctly builds the neces-

sary contexts for the abstraction and pair cases avoiding passing as parameter the

freshness contexts, as done in unification mechanisms based on transformation rules

(cf. [Urb10a]). In these remarks, unifiable terms are considered.

Remark 4.3 In case of pairs, (∇2∇3, σ1σ2) has to be a unifier for (t1, t2) and

(s1, s2), i.e., ∇2∇3 ` t1σ1σ2 ≈α s1σ1σ2 and ∇2∇3 ` t2σ1σ2 ≈α s2σ1σ2. Initially,

unify builds the unifier (∇1, σ1) for t1 and s1. Afterwards, (∇2, σ2) is computed as

a unifier for t2σ1 and s2σ1. Thus, ∇1 ` t1σ1 ≈α s1σ1 implies ∇1σ2 ` t1σ1σ2 ≈α
s1σ1σ2 whenever ∇3 = ∇1σ2 is consistent. This can actually be solved through the

function 〈 # 〉sol, which has been proved to be sound and complete. Finally, since

∇2 ` t2σ1σ2 ≈α s2σ1σ2, weakening the contexts we obtain the desired unifier.

Remark 4.4 When unifying two abstractions with different abstractors, the an-

swer (∇1∇2, σ) has to be a unifier for [a]t and [b]s. Indeed, initially the recursive

call unify(t, (a b) • s) provides a unifier (∇1, σ) for this problem, if it is possible.

Hence, ∇1 ` tσ ≈α (a b) • sσ, but not necessarily ∇1 would be able to derive a#sσ.

Then, 〈 # 〉sol computes the minimal context ∇2 which derives a#sσ separately.

Joining both contexts, the derivation ∇1∇2 ` [a]tσ ≈α [b]sσ can be completed.

Example 4.5 Take the problem of unifying (X,X) and ((a b)·X, a). First, one uni-

fies X and (a b) ·X. The result is the substitution Id and the context {a#X, b#X}.
Then, to unify X Id and a Id, we need the substitution [X 7→ a] and the empty

context ∅. Then, {a#X, b#X} is updated with [X 7→ a], and 〈a#a〉sol returns

failure.

Formalisation of termination of the function unify is not obtained automatically

and requires human intervention to show that lex(|Vars(t, s)|, depth(t)) decreases

in each recursive call. Observe that there are recursive calls in the cases of pairs,

abstractions and applications. In the last two cases one advances on the structure of

the first (and second) terms calling recursively a problem with the same number of

variables, but smaller depth. The same happens for the first recursive call in the case

of pairs. For the second recursive call of the case of pairs, when unify(t2σ1, s2σ1)

is computed, if σ1 6= Id, the number of variables in the problem decreases for the

nature of the nuclear substitutions generated in suspensions. So it is necessary to

prove that the substitutions generated by unify have a special characterisation, as

explained in the next lemma.

Definition 4.6 (Type Subs(s) substitutions) The substitution [X1 7→
t1] . . . [Xn 7→ tn] is said to be of type Subs(s) if

n⋃
i=1

Vars((Xi, ti)) ⊆ Vars(s) and Xi /∈ Vars(ti),∀i = 1, . . . , n.

Lemma 4.7 (Decrement of variables for substitutions of type Subs(s))

Let σ be a substitution of type Subs(s).

12
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(i) Vars(tσ) ⊆ Vars((t, s)).

(ii) σ 6= Id implies that | Vars(tσ) |<| Vars((t, s)) |.

Proof. By induction on the length of σ.

(i) If σ = Id, then obviously Vars(t) ⊆ Vars((t, s)). If σ = σ′[X 7→ u], then

tσ = (tσ′)[X 7→ u]. By induction hypothesis, Vars(tσ′) ⊆ Vars((t, s)). As

X /∈ Vars(u), it is known that

Vars(tσ) = Vars(tσ′[X 7→ u]) = Vars((tσ′, u))\{X} ⊆ Vars((t, s))\{X} ⊆ Vars((t, s)).

(ii) From (i), Vars(tσ′[X 7→ u]) ⊆ Vars((t, s)) \ {X}. Since X ∈ Vars(s), the cardi-

nality indeed decreases, i.e., | Vars((t, s)) \ {X} |=| Vars((t, s)) | −1.

2

Lemma 4.8 (Termination of unify) If unify(t, s) = (∇, σ, b), then the substi-

tution σ is of type Subs((t, s)).

Proof. This is easily checked observing the nuclear substitutions generated in the

cases of suspended variables. Note that, one condition to build [X 7→ π−1 · u], for

instance, is X /∈ Vars(u). 2

The last two lemmas ensure termination for the function unify.

Notation: It is said that ∆ ` σ ≈α γ if, for any Y , ∆ ` (id · Y )σ ≈α (id · Y )γ.

An auxiliary lemma regarding the action of α-equivalent substitutions over a

term is necessary for the formalisation of the completeness of the unification algo-

rithm and it is presented below.

Lemma 4.9 ∆ ` σ ≈α γ implies ∆ ` tσ ≈α tγ, for all term t.

Proof. By induction on the structure of t. 2

The next results are the most difficult part of the formalisation (fully available

at trs.cic.unb.br). Soundness and completeness formalisations follow the same

inductive proof technique and the analysis of cases are also analogous. Thus, we

focus only on completeness.

Lemma 4.10 (Soundness) Let (∇, σ, b) be the solution for unify(t, s). If b =

True, then (∇, σ) is a unifier of t and s.

Proof. The proof is by induction on lex(| Vars((t, s)) |, depth(t)). 2

The previous lemma alone is not enough in the sense that, if the algorithm

returns always False, then no unifier is provided, even to unifiable terms. The next

theorem guarantees that the algorithm actually gives a unifier whenever the terms

are unifiable and that the answer is the most general unifier.

Definition 4.11 (More general solutions) Let ∇,∆ be two contexts and γ, σ

two substitutions. Then (∇, γ) ≤ (∆, σ) if there exists θ such that

∆ ` ∇θ and ∆ ` γθ ≈α σ.

13
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If (∇, γ) is the least unifier for a unification problem according to “≤”, then it is a

most general unifier (mgu).

Theorem 4.12 (Completeness) Let (∇, γ, b) be the solution for unify(t, s). If

there exists any other solution (∆, σ) for the unification problem, i.e., ∆ ` tσ ≈α sσ,

then b = True and (∇, γ) ≤ (∆, σ).

Proof. The proof is by induction on lex(| Vars(t, s) |, depth(t)). There are some

cases to consider: either t or s are suspensions or both have the same structure, that

is, t and s are units or abstractions, for instance. That is due to the α-equivalence

between tσ and sσ and the fact that σ cannot change the structure of a term,

unless when acting over suspended variables. Below, we present the cases where

s is a suspension, both are pairs, and both are abstractions; these are the most

interesting cases.

• (t, π · X) and X /∈ Vars(t) : so ∆ ` tσ ≈α (π · X)σ ≡ π • (Xσ) by Lemma 2.9.

We need to prove (∅, [X 7→ π−1 • t]) ≤ (∆, σ). By definition of ≤, it is necessary

to provide θ such that ∀Y : ∆ ` Y [X 7→ π−1 • t]θ ≈α Y σ. Instantiate it with σ.

· Y 6= X implies ∆ ` Y [X 7→ π−1 • t]σ ≡ Y σ ≈α Y σ.

· Y = X: ∆ ` tσ ≈α π • (Xσ) implies ∆ ` π−1 • (tσ) ≈α Xσ, by Lemma 3.6. As

X[X 7→ π−1 • t]σ ≡ π−1 • tσ, the α-equivalence is derivable.

• ((t1, t2), (s1, s2)) : by hypothesis, ∆ ` t1σ ≈α s1σ and ∆ ` t2σ ≈α s2σ.

By IH, unify(t1, s1) = (∇1, γ1, T rue) and (∇1, γ1) ≤ (∆, σ), i.e.,

there exists θ such that ∆ ` ∇1θ and ∆ ` γ1θ ≈α σ.

By Lemma 4.9, transitivity and symmetry, ∆ ` t2γ1θ ≈α s2γ1θ, that is, (∆, θ)

is a unifier for t2γ1 and s2γ1.

Using IH again, with unify(t2γ1, s2γ1) = (∇2, γ2, T rue), we obtain ∆ ` ∇2θ̃

and ∆ ` γ2θ̃ ≈α θ for some θ̃.

As unify((t1, t2), (s1, s2)) = (∇1γ2∇2, γ1γ2, b), all we need to prove is that ∆ `
γ1γ2θ̃ ≈α σ and ∆ ` ∇1γ2θ̃ (because ∆ ` ∇2θ̃ follows by IH).

By Lemma 4.9, for any variable Y , it is possible to derive

∆ ` (id · Y γ1)γ2θ̃ ≈α (id · Y γ1)θ ≈α id · Y σ.

So, by transitivity, ∆ ` γ1γ2θ̃ ≈α σ holds.

Finally, as ∆ ` γ2θ̃ ≈α θ and ∆ ` ∇1θ, then ∆ ` ∇1γ2θ̃.

• ([a]t̂, [b]ŝ) : by premisse, ∆ ` t̂σ ≈α (a b)•(ŝσ)
Lemma 2.9≡ ((a b)•ŝ)σ and ∆ ` a#ŝσ.

By IH, unify(t̂, (a b) • ŝ) = (∇1, γ, T rue) and (∇1, γ) ≤ (∆, σ), i.e.,

there is θ such that ∆ ` ∇1θ and ∆ ` γθ ≈α σ.

By Lemma 3.5, ∆ ` a#ŝσ implies ∆ ` a#ŝγθ. As θ cannot eliminate any

inconsistency in “a#ŝγ”, then ∆ ` a#ŝγ.

By Lemma 3.13, as 〈 # 〉sol is complete, so 〈a#ŝγ〉sol = (∇2, T rue).

Thus, the algorithm computes unify([a]t̂, [b]ŝ) = (∇1∇2, γ, T rue). To show

that (∇1∇2, γ) ≤ (∆, σ), we only need to see that ∆ ` ∇2θ. Finally, once

∇2θ = 〈a#ŝγθ〉sol, then the result follows. 2
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5 Conclusions and future work

In this work, a nominal unification algorithm that only takes terms as parameters

was presented. Unlike other approaches, which use transformation rules and take

the corresponding freshness problems as part of the unification problem, here we

have designed a function that can compute the freshness contexts separately. Our

nominal unification algorithm is more straightforward and closer to the ones that

implement first-order unification.

Additionally, we formalised transitivity for≈α in a direct manner without using a

weak intermediate relation as in [Urb10b]. Here, the proof was based on elementary

lemmas about permutations, freshness and α-equivalence; such lemmas are well-

known in the context of nominal unification. In [Urb10b], the same auxiliary lemmas

to demonstrate transitivity were proved, including some extra lemmas to deal with

this weak-equivalence. We believe that the current formalisation of transitivity

of ≈α is simpler in the sense that it only uses the essential notions and results.

Symmetry of ≈α is also formalised independently from transitivity, diverging from

[UPG04,Urb10b].

An important aspect to stress is that the style of proof formalised here could

have been done in any other higher-order proof assistant. But PVS was used hav-

ing in mind the objective of enriching the libraries for term rewriting systems,

as mentioned in the introduction. Important features of PVS such as dependent

types can be replaced by other mechanisms in Isabelle/HOL, for instance. For ex-

ample, the substitution generated in the computation of unify(t, s) must be of

type Subs unif(t,s) (this is the PVS specification for the type Subs((t, s)) in

Definition 4.6) in order to prove termination. In Isabelle/HOL, this is overcome

by defining substitutions in a slightly different way. PVS also allows to use type

variables when defining a theory; those variables can be parameterised when such

theory is imported by another one. In Isabelle/HOL, parameterising theories is

not straightforward, but functions can be defined polymorphically, which provides

different feasible solutions for the same kind of formalisation. Of course, a formalisa-

tion in Isabelle/HOL will bring out the possibility of a direct comparison regarding

the previous formalisations of unification in [Urb10a], but it should be emphasised

that the advantages of the current formalisation arise from the differences in the

theoretical proofs.

Future work: Although nominal approaches have several advantages in the treat-

ment of bound variables, there is still work to be done regarding the study of relevant

computational properties. At a first glance, a subsequent study to be done is apply-

ing nominal unification for the construction of a nominal completion algorithm à la

Knuth-Bendix as part of a PVS development for nominal rewriting. A completion

algorithm for closed nominal rewriting systems is provided in [FR12].

Another possible application of this formalisation of the nominal unification al-

gorithm is in the verification of nominal resolution approaches (as done, for instance,

in the propositional case in [CM09]).
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